C3 Functions

1. June 2010 qu.9

The functions f and g are defined for all real values of x by $f(x) = 4x^2 - 12x$ and g(x) = ax + b, where a and b are non-zero constants.

- (i) Find the range of f. [3]
- (ii) Explain why the function f has no inverse. [2]
- (iii) Given that $g^{-1}(x) = g(x)$ for all values of x, show that a = -1. [4]

[4]

[4]

(iv) Given further that gf(x) < 5 for all values of x, find the set of possible values of b.

2. Jan 2010 qu.4

The function f is defined for all real values of x by $f(x) = 2 - \sqrt[3]{x+1}$.

The diagram shows the graph of y = f(x).

- (i) Evaluate ff(-126). [2]
- (ii) Find the set of values of x for which f(x) = |f(x)|. [2]
- (iii) Find an expression for $f^{-1}(x)$. [3]
- (iv) State how the graphs of y = f(x) and $y = f^{-1}(x)$ are related geometrically. [1]

June 2009 qu.5

The functions f and g are defined for all real values of x by f(x) = 3x - 2 and g(x) = 3x + 7. Find the exact coordinates of the point at which

- (i) the graph of y = fg(x) meets the x-axis, [3]
- (ii) the graph of y = g(x) meets the graph of $y = g^{-1}(x)$, [3]
- (iii) the graph of y = |f(x)| meets the graph of y = |g(x)|. [4]

4. June 2009 qu.8

The diagram shows the curves $y = \ln x$ and $y = 2 \ln(x - 6)$. The curves meet at the point P which has x-coordinate a. The shaded region is bounded by the curve $y = 2 \ln(x - 6)$ and the lines x = a and y = 0.

- (i) Give details of the pair of transformations which transforms the curve $y = \ln x$ to the curve $y = 2 \ln(x 6)$. [3]
- (ii) Solve an equation to find the value of a.

5. <u>Jan 2009 qu.6</u>

The function f is defined for all real values of x by

$$f(x) = \sqrt[3]{\frac{1}{2}x + 2} \ .$$

[3]

[4]

The graphs of y = f(x) and $y = f^{-1}(x)$ meet at the point P, and the graph of $y = f^{-1}(x)$ meets the x-axis at Q (see diagram).

- (i) Find an expression for $f^{-1}(x)$ and determine the x-coordinate of the point Q. [3]
- (ii) State how the graphs of y = f(x) and $y = f^{-1}(x)$ are related geometrically, and hence show that the *x*-coordinate of the point *P* is the root of the equation $x = \sqrt[3]{\frac{1}{2}x + 2}$. [2]

6. <u>Jan 2009 qu.7</u>

The diagram shows the curve $y = e^{kx} - a$, where k and a are constants.

- (i) Give details of the pair of transformations which transforms the curve $y = e^x$ to the curve $y = e^{kx} a$.
- (ii) Sketch the curve $y = |e^{kx} a|$.

(iii) Given that the curve $y = |e^{kx} - a|$ passes through the points (0, 13) and $(\ln 3, 13)$, find the values of k and a. [4]

7. <u>June 2008 qu.1</u>

Find the exact solutions of the equation |4x-5| = |3x-5|.

8. June 2008 qu.2

The diagram shows the graph of y = f(x). It is given that f(-3) = 0 and f(0) = 2. Sketch, on separate diagrams, the following graphs, indicating in each case the coordinates of the points where the graph crosses the axes:

(i)
$$y = f^{-1}(x)$$
, [2]

(ii)
$$y = -2f(x)$$
. [3]

9. June 2008 qu.7

It is claimed that the number of plants of a certain species in a particular locality is doubling every 9 years. The number of plants now is 42. The number of plants is treated as a continuous variable and is denoted by N. The number of years from now is denoted by t.

Two equivalent expressions giving N in terms of t are (i)

$$N = A \times 2^{kt}$$
 and $N = Ae^{mt}$.

Determine the value of each of the constants A, k and m.

[4] Find the value of t for which N = 100, giving your answer correct to 3 significant figures. [2] (ii)

Find the rate at which the number of plants will be increasing at a time 35 years from now. [3]

10. Jan 2008 qu.1

Functions f and g are defined for all real values of x by $f(x) = x^3 + 4$ and g(x) = 2x - 5. Evaluate

(i)
$$fg(1)$$
, [2]

(ii)
$$f^{-1}(12)$$
. [3]

11. Jan 2008 qu.6

The diagram shows the graph of $y = -\sin^{-1}(x - 1)$.

Give details of the pair of geometrical transformations which transforms the graph of $y = -\sin^{-1}(x - 1)$ to the graph of $y = \sin^{-1} x$.

(ii) Sketch the graph of
$$y = \left| -\sin^{-1}(x-1) \right|$$
. [2]

[3]

Find the exact solutions of the equation $\left|-\sin^{-1}(x-1)\right| = \frac{1}{3}\pi$. [3]

12.	June 2007	au.2

Solve the inequality |4x-3| < |2x+1|.

13. June 2007 qu.3

The function f is defined for all non-negative values of x by $f(x) = 3 + \sqrt{x}$.

(i) Evaluate ff(169). [2]

[5]

[4]

[5]

[3]

- (ii) Find an expression for $f^{-1}(x)$ in terms of x. [2]
- (iii) On a single diagram sketch the graphs of y = f(x) and $y = f^{-1}(x)$, indicating how the two graphs are related. [3]

14. June 2007 qu.5

A substance is decaying in such a way that its mass, m kg, at a time t years from now is given by the formula $m = 240e^{-0.04t}$

- (i) Find the time taken for the substance to halve its mass. [3]
- (ii) Find the value of t for which the mass is decreasing at a rate of 2.1 kg per year.

15. Jan 2007 qu.9

Functions f and g are defined by

$$f(x) = 2 \sin x \qquad \text{for } \frac{1}{2}\pi \le x \le \frac{1}{2}\pi,$$

$$g(x) = 4 - 2x^2 \qquad \text{for } x \in .$$

- (i) State the range of f and the range of g. [2]
- (ii) Show that gf(0.5) = 2.16, correct to 3 significant figures, and explain why fg(0.5) is not defined. [4]
- (iii) Find the set of values of x for which $f^{-1}g(x)$ is not defined. [6]

16. June 2006 qu.2

Solve the inequality |2x-3| < |x+1|.

17. June 2006 qu.6

The diagram shows the graph of y = f(x), where $f(x) = 2 - x^2$, $x \le 0$.

- (i) Evaluate ff(-3). [3]
- (ii) Find an expression for $f^{-1}(x)$. [3]
- (iii) Sketch the graph of $y = f^{-1}(x)$. Indicate the coordinates of the points where the graph meets the axes.

18. Jan 2006 qu.4

The function f is defined by $f(x) = 2 - \sqrt{x}$ for $x \ge 0$. The graph of y = f(x) is shown above.

(i) State the range of f. [1]

(ii) Find the value of ff(4). [2]

(iii) Given that the equation |f(x)| = k has two distinct roots, determine the possible values of the constant k.

19. June 2005 qu.1

The function f is defined for all real values of x by

$$f(x) = 10 - (x+3)^2.$$

(i) State the range of f. [1]

(ii) Find the value of ff(-1). [3]

[4]

[4]

20. June 2005 qu.2

Find the exact solutions of the equation |6x - 1| = |x - 1|.

21. <u>June 2005 qu.9</u>

The function f is defined by $f(x) = \sqrt{(mx + 7)} - 4$, where $x \ge -\frac{7}{m}$ and m is a positive constant.

The diagram shows the curve y = f(x).

(i) A sequence of transformations maps the curve $y = \sqrt{x}$ to the curve y = f(x). Give details of these transformations.

(ii) Explain how you can tell that f is a one-one function and find an expression for $f^{-1}(x)$. [4]

(iii) It is given that the curves y = f(x) and $y = f^{-1}(x)$ do not meet. Explain how it can be deduced that neither curve meets the line y = x, and hence determine the set of possible values of m. [5]